
AFRL-HE-WP-TR-2002-0019 
UNITED STATES AIR FORCE 
RESEARCH LABORATORY 

APPLICATION OF ARTIFICIAL NEURAL 
NETWORKS FOR AIR TRAFFIC CONTROLLER 

FUNCTIONAL STATE CLASSIFICATION 

Chris A. Russell 
Glenn F.Wilson 

HUMAN EFFECTIVENESS DIRECTORATE 
CREW SYSTEM INTERFACE DIVISION 

WRIGHT-PATTERSON AFB, OHIO 45433-7022 

JUNE 2001 

INTERIM REPORT FOR THE PERIOD JANUARY 2001 TO JUNE 2001 

20020731 070 
Approved for public release; distribution is unlimited. 

Human Effectiveness Directorate 
Crew System Interface Division 
2255 H Street 
Wright-Patterson AFB OH 45433-7022 



NOTICES 

When US Government drawings, specifications, or other data are used for any purpose 
other than a definitely related Government procurement operation, the Government 
thereby incurs no responsibility nor any obligation whatsoever, and the fact that the 
Government may have formulated, furnished, or in any way supplied the said drawings, 
specifications, or other data, is not to be regarded by implication or otherwise, as in any 
manner licensing the holder or any other person or corporation, or conveying any rights 
or permission to manufacture, use, or sell any patented invention that may in any way be 
related thereto. 

Please do not request copies of this report from the Air Force Research Laboratory. 
Additional copies may be purchased from: 

National Technical Information Service 
5285 Port Royal Road 
Springfield, Virginia 22161 

Federal Government agencies and their contractors registered with the Defense Technical 
Information Center should direct requests for copies of this report to: 

Defense Technical Information Center 
8725 John J. Kingman Road, Suite 0944 
Ft. Belvoir, Virginia 22060-6218 

TECHNICAL REVIEW AND APPROVAL 
AFRL-HE-WP-TR-200 2-0019 

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to 
the National Technical Information Service (NTIS). At NTIS, it will be available to the 
general public. 

The voluntary informed consent of the subjects used in this research was obtained as 
required by Air Force Instruction 40-402. 

This technical report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

WILLIAM C. SIMON, Lt Col, USAF, BSC 
Deputy Chief, Crew System Interface Division 
Air Force Research Laboratory 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time lor reviewing instructions, searching existing data sources, gathering and maintaining the data 
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to 
Washlngtor.Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 
Reduction Project (0704-0188), Washington, DC 20503 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
 June 2001 

3. REPORT TYPE AND DATES COVERED 
 Interim Report, January 2001 to June 2001 

4. TITLE AND SUBTITLE 

Application of Artificial Neural Networks for Air Traffic Controller Functional 
State Classification 
6. AUTHOR(S) 

Chris A. Russell 
Glenn F. Wilson 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory 
Human Effectiveness Directorate 
Crew System Interface Division 
Air Force Materiel Command 
Wright-Patterson AFB, OH 45433-7022 
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

11. SUPPLEMENTARY NOTES 

5.  FUNDING NUMBERS 

PE 62202F 
PR 7184 
TA 08 
WU 64 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFRL-HE-WP-TR-2002-0019 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 Words) 

Determining operator cognitive or functional state is a critical component of adaptive aiding systems. To 
determine cognitive state, we must decide which measured features will assist in distinguishing different levels 
of mental activity. Psychophysiological signals were collected for two levels of cognitive workload from which 
43 measures were derived. Three feature reduction methods were applied, and the results were used as inputs to 
an artificial neural network for training and classification. Average classification accuracies up to 89.7% were 
achieved and the number of input features required was reduced by up to 84 percent. 

14. SUBJECT TERMS 
artificial neural networks, cognitive workload, feature saliency, psychophysiological 
measures, air traffic control, pattern classification 
17. SECURITY CLASSIFICATION 

OF REPORT 
UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 
NSN 7540-01-280-5500 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 
52 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UNLIMITED 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



THIS PAGE INTENTIONALLY LEFT BLANK. 



ABSTRACT 

Cognitive workload for seven air traffic controllers was estimated using backpropagation 

feedforward artificial neural networks (ANN). Multiple channels of eye movement corrected, 

continuous electroencephalograph (EEG) recordings, eye blink activity, heart rate and 

respiration intervals were used as input features to classify four levels of mental workload in a 

simulated air traffic control study. The workload levels represented were low, medium and high 

as well as an overload condition. Workload levels were manipulated by changing the volume of 

aircraft or the complexity of the task. Salient psychophysiological features were determined 

using a partial derivative method providing an input-output relationship for each feature. 

The data were evaluated as a seven-class, four-class or a two-class problem. The seven- 

class problem consisted of low, medium and high conditions for both the volume and 

complexity manipulations and the overload condition. The overall mean classification accuracy 

was 80 percent across seven controllers. 

The four-class problem separated the manipulations of volume and complexity as two 

distinct data sets. Both data sets consisted of low, medium and high conditions plus the 

overload condition. A mean classification accuracy of 84% for seven controllers is reported. 

Feature reduction consisted of removing the non-salient features from the data set. Reducing the 

feature set from 88 input features to the nineteen most salient input features increased the mean 

classification accuracy from 84% to 93% for the four-class problem. 

The two-class problem combined the low, medium and high volume data as one class of 

workload and the low, medium and high complexity data as one class of workload. Each were 

compared to overload class. An average of 98% classification accuracy across all seven subjects 

resulted from using the two-class problem. An average of eight features was used after feature 

reduction. Psychophysiological data used with ANNs can very accurately classify air traffic 

controller cognitive workload. Application of these procedures to cognitive workload 

evaluation and adaptive aiding shows tremendous promise. 
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INTRODUCTION 

Air traffic controllers have long considered their jobs to be one of the most cognitively 

challenging, demanding and stressful jobs in the world. In fact, the Federal Aviation 

Administration has been introducing automation and improved navigational equipment to reduce 

the workload of controllers and improve the management of airspace (Benel, Dancy, Dehn, 

Gutmann and Smith, 1989; Lee, Pawlak, Sanford and Slattery, 1995; Perry, 1997). Increased 

traffic in our airspace, as well as expanding airport capacities, has resulted in an increase in 

controller errors. These errors are manifested as monitoring failures, wrong heading and altitude 

assignments and improperly executed hand-offs (Morrison & Wright, 1989). 

Developing measures of workload is key to evaluating workload savings through 

automation and equipment upgrades. Subjective measures, such as the NASA-TLX (Hart and 

Staveland, 1988) and SWAT (Reid & Nygren, 1988), are viable metrics. However, they require 

the operator to report how hard he or she is working. Typically, interrupting the task and 

instructing the operator to complete a questionnaire regarding mental and physical work 

accomplish this. This is invasive, sometimes prone to bias, and is difficult to use in real-time. 

Psychophysiological measures such as EEG, heart rate, eye movement and blink rates, 

and respiratory rates are non-invasive and can be computed real-time. These measures have been 

used to discriminate cognitive workload in several tasks (Greene, Bauer, Kabrisky, Rogers, 

Russell, and Wilson, 1996; Russell, Monett and Wilson, 1996). 

This study investigates the ability of an artificial neural network (ANN) to correctly 

classify several levels of cognitive workload, including cognitive overload, in an air traffic 

control simulation. An approach to classification using ANNs seems appropriate because 



humans are complex, nonlinear systems. ANNs are nonlinear and do not make assumptions 

about the distributions of the data. Neural networks have been used in classification of cognitive 

workload in several studies. Anderson, Devulapalli, and Stolz (1995) investigated single task 

workload classification using alpha band activity and autoregressive methods. Gevins, Smith, 

Leong, McEvoy, Whitfield, Du and Rush (1998), used EEG with ANN classifiers, manipulated 

low, moderate and high working memory load states and compared each load pair in the 

classification process. Cognitive workload estimation was investigated using EEG activity with 

ANNs during a simulated aircraft landing task (Russell, Monett and Wilson, 1996, Greene, 

Bauer, Kabrisky, Rogers, Russell and Wilson, 1996), and in an air-to-ground Scud hunt mission 

(Russell, Reid and Vidulich, 2000). 

Physiological data, in addition to being nonlinear, are neither normally distributed nor 

stationary and the true distribution is not known. Fishers' discriminant analysis treats diagnostic 

tests as multivariate normal and the covariance matrices of the test are assumed to be equal. 

ANNs have advantages in that they are distribution free, meaning that the statistical distribution 

of the data is not important. This means clear superiority over classical statistical methods when 

there is no knowledge of distribution function or if the data are non-Gaussian. 

Much of the previous work in this area evaluated the use of ANNs in single task 

environments (Anderson, Devulapalli, & Stolz, 1995, Gevins, Smith, Leong, McEvoy, Whitfield, 

Du & Rush, 1998). Single task experimentation provides the foundation for implementing 

artificial neural networks in cognitive workload classification. It shows that ANNs can 

discriminate patterns in psychophysiological data. However, in the real world most of the 

problem areas associated with cognitive overload are found in multitask environments such as air 

traffic control and piloting aircraft. 



METHODS 

Subjects 

Seven U.S. Air Force air traffic controllers were used in this study. Subjects ranged from 

21 to 29 years of age and were all right-handed. Their experience levels in air traffic control 

ranged from 2.5 to 7.5 years (Brookings, Wilson and Swain, 1996). 

Simulator Task 

TRACON for Windows (Version 1.03), an air traffic control simulation created by 

Wesson International, was used in this study. The simulation display (see Figure 1) was 

comprised of four elements, a color radarscope of Los Angeles International airport and four 

surrounding airports, a communications display consisting of controller commands and pilot 

responses, flight strips representing active and pending aircraft, and the controller's score for the 

current scenario. 

The workload levels were manipulated by increasing the volume of aircraft or the 

complexity of the situation presented to the subject. Three levels of workload were evaluated, 

low, medium and high. The volume condition consisted of manipulating the number of aircraft 

presented to the subject over the session. The number of aircraft was six for the low condition, 

twelve for the medium level, and eighteen for the high workload condition. The aircraft were 

presented in a fifteen-minute time interval for each of the conditions. The complexity conditions 

were simulated by varying the traffic mix presented to each subject while maintaining the 

number of aircraft constant at twelve. These manipulations were the result of varying the aircraft 



types and the ratio of arrivals and departures. Finally, for the overload condition fifteen aircraft 

were presented to each controller during a five-minute period. 

The NASA-TLX was used to collect subjective estimates of workload for each condition. 

Six subscales are collected from the NASA-TLX subjective workload score. They are mental 

demand, physical demand, temporal demand, performance, effort, and frustration. A composite 

TLX score is computed from a combination of the six subscales. The TLX results verified that 

four separate difficulty levels were achieved. 

Figure 1. Sample TRACON Display 



Data Collection 

Nineteen channels of EEG data were recorded at sites positioned according to the 

International 10-20 electrode system (Jasper, 1958) using a Biologic Brain Atlas in and an 

ElectroCap. Mastoids were used as references. Electrode impedences were below 5K ohms. 

The amplifier gain was 30,000 and the data were passed through a bandpass filter with cutoff 

frequencies of 0.1 and 30 Hz. Eye blinks, heart rate, and respiration intervals were also 

collected. 



PROCEDURE 

Feature Selection 

The data from each electrode site was filtered using a bank of elliptical filters to produce 

five bands of EEG: delta (DC-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and 

gamma (31-42 Hz). Elliptical filters are ideal since they have sharp cutoff frequencies and low 

order. The filters used in this study were eighth order elliptical filters with stopband attenuation 

of 20 dB and a passband ripple of 1 dB. Figure 2 shows the frequency response of the elliptical 

filters. 

10        15       20        25       30       35       40        45        50 
Frequency (Hz) 

Figure 2. Frequency Response of Elliptical Filters 



The data from the middle five minutes of each workload level were segmented into ten- 

second windows with a fifty-percent overlap as shown in Figure 3. Parseval's Theorem states 

that the integral of the magnitude square of a time series is equal to the integral of the magnitude 

square of that time series' Fourier coefficients. In other words, the energy in the time domain is 

equivalent to the energy in the frequency domain. Making use of this theorem, we determined 

the log power of each band using 

P = 10*log(£/(02) (1) 

Log power of delta, theta, alpha, beta and gamma bands from the 17 sites were used 

resulting in 85 features. Three peripheral physiological features were also used. The log power 

of the EOG channel and the average heart rate and average respiration rate completed the battery 

of 88 features. 

Exemplar 1 

0 5 

Time (seconds) 

Exemplar 2 Exemplar 3 

10 15 20 

Figure 3. Description of Moving Window 



Artificial Neural Network 

A feedforward backpropagation ANN was used in this study (Widrow and Lehr, 1990; 

Lippmann, 1987). A backpropagation ANN classifier maps input vectors to output vectors in 

two phases. First, the network learns the input-output classification from a set of training 

vectors. Then, after training, the network acts as a classifier for new vectors. 

The backpropagation algorithm initializes the network with a random set of weights for each 

fully connected layer, then the network trains using the input-output pairs. The learning 

algorithm uses a two-stage process for each pair: forward pass and backward pass. The forward 

pass propagates the input vector through the network until it reaches the output layer. First, the 

input vector propagates to the hidden units. Each hidden unit calculates the weighted sum of the 
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Figure 4. Network architecture showing a fully connected network with the number of neurons in 

each layer. The form of the logistic sigmoid activation function is provided at the bottom. 



input vector and its associated interconnection weights. Each hidden unit uses the weighted sum 

to calculate its activation. Next, hidden unit activation propagates to the output layer. Each node 

in the output layer calculates its weighted sum and activation. Figure 4 shows the forward pass 

and Figure 5 is a typical unit featuring the summation and the activation. The output of the 

network is compared to the expected output of the input-output pairs; and their difference defines 

the output error. In the second stage of network training, the output error propagates backward to 

update the network weights. First, the error passes from the output layer to the hidden layer 

updating output weights. Next, each hidden unit calculates an error based on the error from each 

1 

Figure 5. Individual neuron showing the weighted sum of the inputs followed by the logistic 

sigmoid activation function, f(a). 



output unit. The error from the hidden units updates the input weights. One training epoch 

passes when the network sees all the input-output pair in the training set. Training stops when 

the sum-squared error is acceptable or when a predefined number of epochs passes. The 

algorithm (backward pass) attempts to minimize the error or energy function 

2 
E=  I 

1 = 1 

m 
(2) z.-t. 

i     i 

where m is the size of the training set, z is the neural network output vector, and t is the expected 

output for each training input-output pair i. 

It may be simpler to examine the algorithm as a series of steps. The steps for 

implementing a backpropagation neural network are as follows (Lippmann, 1987): 

(1) Initialize the weights (w,-) and biases (bt) where i is the current iteration. 

(2) Present the input matrix (p) and the target vector (t). 

(3) Calculate the output of the network (z,). 

(4) Calculate the error (e = z,~1). 

(5) Determine the new weights (wi+]) where i+1 is the next iteration. 

(6) Determine the new learning rate. 

(7) Repeat steps 2 through 5 until desired error is achieved. 

Mathematically, these steps were as follows: (Haykin, 1999; Widrow and Stearns, 1985; 

Widrow and Lehr, 1990). The weights and biases were initialized using a random number 

generator and limiting the values to the range -0.5 to 0.5, which is the nearly linear region of the 

hyperbolic sigmoid activation function. 
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The input data were normalized between 0 and 1 using a min-max equation 

pn(i)=p(i)-_P^, (3) 
"max       "min 

where pn is the normalized input vector, p is the input vector, p^ and pmax are the minimum and 

maximum values for each feature, and i represents the Ith exemplar. The target vectors were 

assigned based on the a priori target output class. The class target output neuron was assigned 

0.9 and all other target output neurons were assigned 0.1. The target vectors were [0.9 0.10.1 

0.1] for low workload, [0.1 0.9 0.1 0.1] for medium, [0.1 0.1 0.9 0.1] for high and [0.1 0.1 0.1 

0.9] for the overload condition. 

The output of the ANN is determined by propagating the normalized input through each 

layer of the backpropagation neural network. It is necessary to examine the output of an 

individual neuron and then expand that understanding to the framework of the entire network. 

As shown in Figure 5, the output of the individual node or neuron is 

z = f(a), (4) 

and 

<* = Zi(
wuPj+b)> (5) 

where wij is the weight, pj is the input and b is the bias, and f(a) is the activation function acting 

on a. The figure suggests this neuron is in the input layer since the leading index on the weight 

is 1. Generalizing to any neuron results in 

z; = f(a/) (6) 

and 

11 



1 I . 
aj=X\wuPj+bj)- (7) 

7=1 

Activation functions can be linear or nonlinear. A common activation function is a sigmoidal 

nonlinearity. In our case, it is a logistic sigmoid function with an output range 0 < f(a) < 1 in the 

form 

M=~- (8) 

The error is simply the difference between the output of the network and the expected 

target value. 

£*=I>,-',)2 (9) 

where k is the error for the current input exemplar. 

We can adjust the weights and try to minimize the error Ek through the backward path. 

Although the activation function is nonlinear, it is differentiable and we can compute —^- which 
dwtj 

we will make use of in our selection of a learning rule. The network algorithm is an extension of 

the Widrow-Hoff learning rule (Widrow and Lehr, 1990) which is a gradient descent algorithm 

based on Widrow's earlier work in Adaline and Madaline neural networks. This rule adjusts the 

weights using a method of steepest descent algorithm. 

wij(n) = wij(n-l)-ju-— (10) 

where ß is a constant that controls the speed of convergence (learning rate). 

Adaptive learning and momentum were used to decrease the time required for training the 

networks and to ensure the network reaches a global mimina. Typically, gradient descent 

12 



methods use a fixed learning rate to control the rate of convergence. However, it is difficult to 

determine an optimum rate. If the fixed learning rate is too large, the gradient descent algorithm 

becomes unstable due to oscillations. If the learning rate is too small, the incremental steps along 

the error surface are small and in turn the algorithm takes a long time to converge to the desired 

error. Adapting the learning rate to optimize the learning progress can maintain stability while 

keeping the learning rate as large as possible to improve the rate of convergence. As the slope of 

the local error surface increases, the learning rate decreases to control stability. 

Momentum prevents the network algorithm from becoming trapped in a local minimum. 

Essentially the algorithm will "jump over" or ignore small perturbations in the error surface. 

Modification of the delta learning rule to include momentum results in a new learning rule 

dE 
wff(n) = awtf («-!)-//-—, (11) 

dw 
y 

where a is the momentum and jx is the learning rate. 

This process is repeated until a desired error is achieved. The desired error is problem 

specific and must be determined. We determined our target or desired error by the validation 

method. The neural nets were optimized by a validation method. The data were segmented into 

three data sets: a training data set, a validation set and a test data set. During training, the neural 

network adjusted the weights and biases based on the training data set. After each adjustment the 

weights were tested on the validation set and once the network reached a minimum solution the 

test set was used to evaluate the final weights. The training and the validation error initially 

follow the same path until the ANN begins to learn the idiosyncrasies of the training data set. 

The error for the training data set still continues to decrease after this point but the validation 

data set error increases due to the neural network overlearning the peculiarities of the training 

13 



data. The ideal stopping point for training is the minimum validation error. The ANNs were 

trained to a sum-squared error of 0.04 which generally occurred 10,000 epochs or passes through 

the data. These training criteria were used for the remainder of the analysis. 

Once trained, ANN weights are fixed and the net acts as a pattern classifier. As a 

classifier, the ANN examines input vectors it has never seen and predicts the class of the input 

vector. 

The number of nodes in the input layer, the hidden layer and the output layer defines the 

ANN used in this study (see Figure 4). The number of input units and the number of output units 

are problem dependent. In our case, the input layer consists of 88 neurons representing the 88 

features which form the input space. The output layer consisted of two, four or seven neurons 

since the number of classes existing in the data determined the size of the output layer. The 

number of hidden units required is usually not known. Hidden units are the key to network 

learning and force the network to develop its own internal representation of the input space. The 

ANN that produces the best classification with the fewest units is selected as the best topology. 

A net with too few hidden units cannot learn the mapping to the required accuracy since the 

smaller hidden layer would limit interaction of the input space. Too many hidden units allow the 

net to 'memorize' the training data and will not generalize well to new data. We used 88 neurons 

in the hidden layer. 

Feature Reduction 

An important consideration in classification is determining the input features. This is essential 

for any classification problem or algorithm, be it nonlinear (ANNs) or linear (stepwise 

14 



discriminant analysis). Some input features may be redundant because they are highly correlated 

or duplicated with only scalar differences. Others may not provide any useful information for 

discrimination (noise). Decreasing the number of input features by removing the redundant or 

meaningless inputs reduces the computation required for training. Reducing the number of 

features also reduces the number of exemplars or samples necessary for adequate learning by the 

classification algorithm. The number of samples required to estimate the free parameters of the 

network model increases nonlinearly as the number of inputs increases. This increase is the 

'curse of dimensionality' inherent to all pattern recognition models. As the number of 

dimensions increase the number of training data necessary to develop an adequate model is 

boundless. 

The Ruck saliency measure (Ruck, Rogers and Kabrisky, 1990) was used to determine which 

features provide information for the classification algorithm. This technique calculates the 

partial derivative of each layer and rank orders the features based on the saliency measure. In 

essence, this method provides an input-output relationship between the network output layer and 

the input features. This partial derivative method is possible because the activation function is 

nonlinear but is differentiable. The derivative of the activation function (equation 8) used in this 

study is 

f'(a) = f(a)(l-f(a)). (12) 

Feature saliency is based on the concept that a fully trained network contains all the 

information for describing the relative importance or saliency of each of the input features. The 

partial derivatives look cumbersome but can be readily calculated using the chain rule and are 

easily implemented in vector form. These calculations are performed starting with the output 

layer. The partial derivative for the output layer is 

15 



«3 =/(««) (13) 

= 4(1-*«). (14) 

where k3 represents each output neuron and, in our case, the output layer is the third layer. 

Recall from equation 7, a represents the weighted sum of the inputs to the activation function 

plus the bias or threshold. The second or hidden layer is a little more complicated: 

nW'K2
2)2»*2 (i5) 

*2 

Jt2 
(16) 

In this case, k2 represents the second layer neurons. The input layer has the same form as the 

second or hidden layer: 

4 
*i 

= aiifl-flli)l>*iw' 

(17) 

(18) 
*i 

Finally the partial derivative for the entire neural network is 

axi k\ 

Combining equations 13 through 19. 

(19) 

oxi        k\ 
«i. a-«!,)£ 

Al 
«HO-«ö)Ska-fl!J)k 

42 

W kl W; (20) 

Once the partial derivatives have been calculated the saliency can be determined for each 

feature by 

r.-II 
P    J 

(21) 
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where T, is the saliency for the ith feature,;' ranges over the outputs, and/? ranges over the 

exemplar vectors in the training set. 

Feature reduction was accomplished with an iterative approach. Multiple networks were 

trained using all the features described in the feature selection portion of this paper. The partial 

derivative saliency was calculated for each feature. The features were then rank ordered based on 

the computed saliency. The least salient feature was removed from the input matrix and the 

networks were retrained using the reduced feature set. This sequence was repeated until the 

networks would no longer converge or the classification accuracy dropped well below the 

accuracy using all the features. The minimum data set is the smallest set that has the highest 

classification accuracy. Figure 6 shows the typical response for this iterative process. In this 

case 12 salient features are the minimum number required 

10 

o iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiHiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiiiiiiniiiiiii 
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Figure 6. Classification behavior of the ANN as features are removed. 
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RESULTS 

Seven-class Problem Using All Features 

ANNs were trained with a seven-class problem using all available features. The volume 

and complexity data as well as the overload data for each subject were combined resulting in 

seven distinct classes. These classes were low complexity, medium complexity, high 

complexity, low volume, medium volume, high volume, and the overload condition. Table 1 

shows the results of this comparison across subjects. The overload condition was correctly 

classified with the highest degree of accuracy at 90 percent correct. The classification accuracy 

across all conditions was 79.7%. The mean percentage correct for each subject is shown in 

Figure 7. The full individual subject results are located in Appendix C. 

Although the workload states were labeled low, medium and high for both conditions, it 

is obvious that there were different classes between the volume and complexity conditions. This 

can be seen by how well the ANNs were able to differentiate between the conditions and 

workload levels. For example, the volume low is distinct from the complexity low. The volume 

low was correctly classified at 82 percent and was misclassified as complexity low only 4 

percent. The remaining levels are similarly distinct. 
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Table 1 Seven-class Probability Matrix 

VL              VM VH CL CM CH OL 

VL 0.82            0.05 0.03 0.04 0.02 0.02 0.01 

VM 0.05           0.73 0.11 0.02 0.03 0.04 0.02 

VH 0.01            0.09 0.78 0.01 0.03 0.05 0.03 

CL 0.06           0.02 0.01 0.82 0.07 0.03 0 

CM 0.04           0.03 0.05 0.07 0.73 0.06 0.02 

CH 0.03           0.04 0.05 0.02 0.05 0.78 0.03 

OL 0.01            0.02 0.02 0 0.02 0.02 0.90 

VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low CM- 
Complexity Medium CH-Complexity High OL-Overload 
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Figure 7. Individual Classification Accuracy 

Four-class Problem Using All Features 

When the volume and complexity data were analyzed separately, the classification 

accuracy across subjects and across difficulty levels using all features was 85.6 percent for the 

volume data and 83.4 percent for the complexity data. The condition with the highest rate of 
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accurate classification was the overload condition in both the volume and complexity conditions 

with 93.8 and 89.4 percent correct classification, respectively. All other conditions had 

classification accuracies around eighty percent. Tables 2 and 3 show the probability matrices for 

both the volume and the complexity data. 

Table 2: Complexity Data Probability Matrix 

Truth Low 
Truth Medium 
Truth High 
Truth Overload 

Test Low       Test Medium       Test High     Test Overload 
0.8288 
0.0804 
0.0432 
0.0185 

0.0886 
0.7897 
0.0811 
0.0346 

0.0681 
0.0847 
0.8228 
0.0525 

0.0145 
0.0451 
0.0529 
0.8974 

Truth Low 
Truth Medium 
Truth High 
Truth Overload 

Table 3: Volume Data Probability Matrix 
Test Low       Test Medium       Test High      Test Overload 

0.8545 
0.0543 
0.0419 
0.0131 

0.0619 
0.8096 
0.1155 
0.0287 

0.0655 
0.1124 
0.8213 
0.0200 

0.0182 
0.0237 
0.0213 
0.9383 

The overall classification accuracy across subjects was nearly equivalent between the 

volume and the complexity conditions. The volume data indicates the ANNs were more likely to 

confuse the medium and high workload conditions. Medium workload was classified correctly 

81% of the cases and was misclassified as high workload in 11% of the cases. The high 

workload condition was classified similarly with 82% classified correctly and 12% misclassified 

as medium workload. The complexity condition did not show the same behavior. The 

misclassification was distributed evenly between low and high workload for the medium 

workload condition while the low and high workload condition was misclassified more as 

medium workload. In all cases, correct classification was significantly above chance, which is 

25% for the four conditions. 
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The average classification accuracy of the individual subjects ranged from 74.2 to 91.4 

percent. Figure 8 shows the classification results for the individual subjects for both the volume 

and complexity data. Figure 9 shows the classification accuracy of the overload condition for 

each subject. In most subjects the classification accuracy for the overload condition was over 90 

percent. The complete individual subject results can be seen in Appendix A. 
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Figure 8. Individual Subject Classification Accuracy 
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Figure 9. Overload Condition Classification Accuracy 

Four-class Problem Using Reduced Features 

The overall classification accuracies for both the volume and complexity data sets for each 

subject after feature reduction are shown in Figure 10. The across-subject average classification 

accuracy was very similar for both the volume and complexity data sets as shown in Tables 4 

and 5. The results were 92.5% for the volume data and 92.6% for the complexity data. The 

individual subject results can be seen in Appendix B. Although the classification results were 

similar, the number of features required was different. The volume data required 22 features 

across subjects while the complexity data required 17 features across subjects to achieve the 

same results as shown in Tables 6 and 7. The ranking of features across condition was 

determined by the average saliency for each feature across condition. The results were then rank 

ordered and are listed in Table 8. 
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Table 4: Complexity Probability Matrix 
Test Low Test Medium Test High Test Overload 

Truth Low 0.9258 0.0474 0.0193 0.0075 
Truth Medium 0.0314 0.8904 0.0560 0.0222 
Truth High 0.0147 0.0473 0.9147 0.0233 
Truth Overload 0.0006 0.0107 0.0152 0.9735 

Truth Low 
Truth Medium 
Truth High 
Truth Overload 

Table 5: Volume Probability Matrix 
Test Low       Test Medium       Test High      Test Overload 

0.9052 
0.0290 
0.0205 
0.0057 

0.0511 
0.8964 
0.0440 
0.0145 

0.0320 
0.0487 
0.9249 
0.0070 

0.0117 
0.0259 
0.0105 
0.9728 
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Figure 10. Subject classification accuracy after reduction for the four-class problem 
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Table 6: Salient Features - 
Volume 

Feature 

T4 beta 
T3 beta 
01 beta 
C4 beta 
F8 beta 
T6 gamma 
T6 beta 
P4 beta 
02 beta 
C4 delta 
F4 gamma 
F7beta 
Avg Hrtrate 
C3 delta 
T5 beta 
FZ gamma 
CZ delta 
T5 theta 
01 alpha 
PZ theta 
F3 beta 
PZ delta 

Mean Relative 
Saliencv 

Table 7 : Salient Features - 
 Compexity 

0.044 
0.043 
0.037 
0.035 
0.034 
0.031 
0.030 
0.029 
0.027 
0.027 
0.026 
0.025 
0.024 
0.024 
0.023 
0.021 
0.020 
0.020 
0.020 
0.018 
0.017 
0.016 

Feature 

01 gamma 
02 gamma 
02 beta 
01 beta 
T5 gamma 
T5 beta 
01 alpha 
T6 gamma 
02 alpha 
T6 beta 
PZ beta 
C4 beta 
Avg Hrtrate 
C3 beta 
T5 theta 
F3 beta 
F4 beta 

Mean Relative 
Saliencv 

0.063 
0.057 
0.049 
0.047 
0.044 
0.042 
0.039 
0.034 
0.031 
0.030 
0.027 
0.024 
0.022 
0.021 
0.021 
0.021 
0.020 

Table 8 : Salient Features - 
Volume and Complexity 

Feature Mean Relative 
Saliencv 

01 beta 0.042 
02 beta 0.038 
01 gamma 0.035 
02 gamma 0.035 
T6 gamma 0.033 
T5beta 0.033 
T4 beta 0.031 
T6 beta 0.030 
C4 beta 0.030 
T5 gamma 0.030 
01 alpha 0.029 
T3 beta 0.028 
Avg Hrtrate 0.023 
F8 beta 0.023 
T5 theta 0.021 
F3 beta 0.019 
P4 beta 0.019 
02 alpha 0.018 
F7 beta 0.017 
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a. b. c. 

Figure 11. a) Salient electrode sites for four-class problem, b) Salient electrode sites for volume 

four-class problem, c) Salient electrode sites for complexity four-class problem 

Volume            Complexity 

/          CZ 
/F3 \                    \ 

/     T4 

/      T3               / 
/T6   02\                       \ 

Ol C4                                 \ 
F4 

\      F7      F8   \ PZ Heart /                        / 

\c3 Ty            / 
\           FZ 

Figure 12. Overlap of electrode sites for four-class reduced feature analysis 
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Figure 11 shows the electrode placement of the salient features across conditions. The 

Venn diagram in Figure 12 indicates the electrode placement and the overlap between conditions. 

The volume condition ANNs used the same electrodes as the complexity condition plus seven 

additional electrode sites. The volume condition required more electrodes to have enough 

information to separate the workload classes. 

Two-class Problem Using Reduced Features 

The success of the artificial networks in distinguishing the overload condition at such a 

high level prompted the segmentation of the data into two groups; overload and not overload. 

The not overload condition is the balanced combination of the low, medium and high workload 

conditions. In other words, a third of the not overload condition came from each of the three 

workload conditions. The ANNs were trained with the two-class problem and the results are 

shown in Table 9 for the volume data and Table 10 for the complexity data. The individual 

subject average classification accuracy is shown in Figure 13. These results are after reducing 

the features using the partial derivative method of feature reduction. 

Table 9: Two-class Volume Accuracy 
Test Not Overload        Test Overload 

Truth Not Overload 
Truth Overload 

0.9935                             0.0065 
0.0367                            0.9633 

Table 10:1 rwo-class Complexity Accuracy 
Test Not Overload        Test Overload 

Truth Not Overload 
Truth Overload 

0.9884                           0.0116 
0.0369                             0.9631 
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Both the volume and complexity conditions had high classification accuracies and used 

an average of eight salient features. The volume data set had an overall classification accuracy of 

98.6% using an average of eight features. The complexity data had an overall classification 

accuracy of 98.2% using an average of eight features. These features are 01 beta, 02 beta, 02 

gamma, Ol gamma, T6 beta, T5 beta, T4 beta, and T3 beta in descending order of importance as 

shown in Table 11. It is interesting to note that the important features are EEG and that no 

peripheral measures were used, as shown in Tables 12 and 13. Note the two most salient features 

were identical for both task condition manipulations. The two most salient features for both the 

volume and complexity conditions were 01 and 02 beta. Figure 11 illustrates the electrode 

placement of the most salient features. Also the higher frequency components of the EEG were 

used, namely the beta and gamma frequency bands. 
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Figure 13. Individual subject classification accuracy for the two-class problem. 
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Table 11. Salient Features - 
Volume and Complexity 

Feature Mean Relative 
Saliency 

01 beta 0.151 
02 beta 0.081 
02 gamma 0.052 
01 gamma 0.045 
T6 beta 0.045 
T5 beta 0.037 
T4 beta 0.037 
T3 beta 0.035 

Table 12. Salient Features- 
Volume 

Feature Mean Relative 
Saliency 

01 beta 
02 beta 
T3 beta 
PZ delta 
PZ gamma 
T4 beta 
T5 beta 
T3 theta 

0.198 
0.070 
0.048 
0.047 
0.040 
0.035 
0.033 
0.033 

Table 13. Salient Features - 
Complexity 

Feature Mean Relative 
Saliencv 

01 beta 0.052 
02 beta 0.046 
02 gamma 0.045 
01 gamma 0.039 
T6 beta 0.037 
T6 theta 0.024 
T5 beta 0.021 
T4 beta 0.019 
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Figure 14. a) Salient electrode sites volume and complexity, b) Salient electrode site for volume 

data, c) Salient electrode site for complexity data. 

The salient electrode placement for both the volume and complexity conditions was the same 

with one exception. The volume manipulation indicates the Pz electrode was used in addition to 

the others to determine the classes for this condition. This is shown in Figures 14 and 15. The 

salient EEG bands were all in the higher frequency bands, beta and gamma, except for one 

occurrence of the theta band. This pattern is very different from the four-class problem. The 

salient electrodes appear scattered over the entire scalp in the case of the four-class problem 

while, with the two-class problem the salient electrodes are located on the back and sides of 

the head. 
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Volume Complexity 

Figure 15. Overlap of Electrode Sites 
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DISCUSSION 

The results of this study demonstrate that very high levels of classification accuracy can 

be achieved to discriminate among cognitive workload levels of air traffic controllers. 

Accuracies approaching 100 percent were found when only overload versus non-overload 

conditions were considered. The operator workload classification from the four level volume 

and complexity conditions also achieved very high levels of accuracy. Both manipulations of 

task difficulty yielded accuracies with an average correct classification of 92 percent. These 

procedures would be useful in both task evaluation and adaptive aiding situations. The results of 

the combined volume, complexity and overload conditions showed that the ANNs are very 

sensitive to the effects of performing different tasks. 

Training and testing the artificial neural networks on all seven classes: low, medium and 

high for volume and complexity and the overload condition, showed that good classification 

accuracies could be achieved. The mean accuracy of 80 percent is much better than chance 

levels. The results also demonstrated that performing the volume and complexity manipulations 

produced separate operator states. There was very little overlap between the classification states 

between the two conditions. The incorrectly classified data were scattered among all of the other 

six conditions. That is, the low volume and complexity conditions were not misclassified any 

more frequently than with the other conditions. This indicates that the ANNs are very sensitive 

to the differences in the data. This high level of discrimination shows that the ANNs do not 

combine all similar levels of workload. The psychophysiological data contained sufficient 

differences between the various conditions that permitted the ANNs to successfully discriminate 

among them. On the other hand, this also means that the ANNs have to be trained on all 
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expected conditions since they did not generalize to other similar workload levels. It might be 

possible to combine the levels from the two conditions and achieve better results. 

Higher levels of classification accuracy were achieved when the ANNs were trained on 

data from only the volume or complexity conditions. The mean accuracies increased to 86 and 

83 percent correct for the volume and complexity conditions, respectively. While not extremely 

large, this increase in accuracy does show that the presence of less relevant data interferes with 

the accuracy of the ANNs. The increase in accuracy is a result of the 'curse of dimensionality' 

problem described above. The ANNs need more sample data to estimate the increased number 

of free variables (weights and biases) in the model. Feature reduction removes free variables 

from the model, therefore, allowing the algorithm to provide better estimates of the remaining 

variables using the fixed sample size. 

Feature reduction using saliency analysis produced marked improvement in the 

classification accuracies. The mean percentage corrected jumped to 93 percent for both volume 

and complexity conditions. This seven to ten percent improvement is especially remarkable 

because this raised the correct classification levels to only seven percent, on the average, from 

perfect classification. These levels of classification accuracy reach the range where the 

procedures used here can be applied in actual work situations. The highest accuracy levels were 

found when the data were reduced to a two-class problem; overload versus combined low, 

medium and high. The overall classification accuracies were above 98 percent for both volume 

and complexity conditions. This near perfect accuracy shows the extremely high levels of 

discrimination that can be achieved with this type of data using ANNs and feature reduction. In 

task situations where cognitive load classification might be applied, this level of discrimination is 

necessary. That is, if the job difficulty and operator workload were manageable then intervention 
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by aiding options would not be required. However, if the workload is approaching or exceeding 

the capabilities of the operator then intervention would be necessary. If this near perfect 

classification accuracy can be replicated with different real world tasks and with larger numbers 

of operators then application to actual job situations will be considered. 

Feature reduction using saliency analysis is an important element in the success of 

achieving such high levels of classification accuracy. The number of features eliminated 

increased from the four to the two-class problems. With the four-class problems 17 and 22 

features of the original 88 were used. For the two-class problem the high accuracies were 

achieved with only eight of the original features. This reduction in feature size improved the 

ANNs by removing noise features and also improving the ANN node size to exemplar ratio 

which enhances classification accuracy. The smaller feature set reduces the amount of data 

required to completely estimate the parameters of the neural network. The electrode sites that 

contributed to the reduced feature set in the four-class problem were scattered over the scalp with 

a preponderance located around the edges of the scalp. The most salient electrode sites in the 

two-class problem were primarily located around the edges of the scalp. The EEG bands used in 

the reduced feature set were predominantly in the high EEG frequency bands, beta and gamma. 

It is possible that this could represent very low electromyographic activity from the muscles of 

the head. 

These results are especially remarkable because professional air traffic controllers were 

engaged in a highly complex simulation. These are the conditions that are encountered in the 

real world. Typical laboratory studies use simple, often single task situations, and unselected 

subjects. While these procedures are required to provide rigid, highly controlled environments 

they are not typical of the usual day-to-day work environment. In the work environment, control 
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over the experimental conditions is often greatly reduced. Operators are engaged in several 

subtasks at the same time. The applicability of the laboratory results to the real world situation 

can be questioned. Further, subjects in most laboratory experiments are not selected for 

particular attributes nor are they highly trained on complex tasks. In many real world jobs 

operators are selected for attributes necessary for job performance and receive extensive training 

in order to become proficient at their jobs. In the study reported here these real world criteria 

were met. The air traffic controllers had been selected for training, successfully accomplished 

the required training and had several years experience on the job. This lends weight to the notion 

that these results can be successfully applied in complex real world jobs. 

Before these procedures can be incorporated into day-to-day tasks the reliability of the 

procedures from day-to-day has to be demonstrated. The current results were based on data from 

onlyone day. These procedures must be robust enough to accommodate day-to-day variation 

before they can be widely accepted. Larger numbers of operators must be tested to determine if 

the same results can be achieved from everyone or if there are groups of operators on which these 

procedures do not work well enough. Additionally, faster ANN training procedures should be 

developed. It may be possible to develop a generic ANN that can be quickly adapted for each 

operator and save the lengthy training time when starting with an ANN with random initial 

weights. This generic ANN will have fixed weights that are 'closer' to the optimal solution than 

random weights. In other words, if we know the approximate final weights for good 

discrimination, then less time is required to determine the true weights since the algorithm is 

closer to the answer initially. 

The overlap of the salient electrodes in both the two-class problem and the four-class 

problem indicates a small set of electrodes is essential in separating the classes. The electrodes 
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necessary in classifying workload levels for the volume condition for both the two and four-class 

cases contain the subset of electrodes used by the complexity manipulation. For example, in the 

two-class case, the six electrodes T3, T4, T5, T6, 01 and 02 are used for both the volume and 

the complexity manipulation of the air traffic control task. Electrode site has to be investigated 

to determine if universal sites can be used or if sites and EEG bands need to be selected for 

different job types and operators. 

Saliency analysis procedures can also be used in research to help determine the 

mechanisms that underlie job performance and workload. The saliency analysis isolates those 

features in the data that contain the most variance. By examination of these data, insights can be 

gained into the relationships between job performance and brain and peripheral nervous system 

activity. This information could be used to improve workstations, work procedures and training 

procedures. The addition of performance features could improve the accuracy and reliability of 

ANN classification. For example, a measure of aircraft separation could indicate how well a 

controller is managing the airspace. Including performance and situational data could lead to 

better classification of cognitive load and an improved understanding of the underlying 

mechanisms of cognitive load. 

Development of non-invasive or unobtrusive sensor technology and the use of neural 

networks will make real-time classification of cognitive workload in any environment a reality. 

The advent of high speed computer processors and the reduction in size of computer hardware 

will make possible the development of small, wearable operator functional state devices. 
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APPENDIX A - INDIVIDUAL SUBJECT PROBABILITY MATRICES USING ALL 
FEATURES * 

Subject 1 - Complexity Subject 1 - Volume 
Low Medium High    Overload 

Low 204 25 0            0 
0.89 0.11 0            0 

Medium 19 
0.08 

211 
0.88 

2 7 
0.01        0.03 

High 2 10 213           10 
0.01 0.04 0.91         0.04 

Overload 3 
0.01 

1 
0 

8 225 
0.03        0.95 

Subject 2 - Complexity 
Low Medium High    Overload 

Low 197 24 17            2 
0.82 0.10 0.07        0.01 

Medium 12 
0.05 

194 
0.87 

11 6 
0.05        0.03 

High 8 
0.03 

12 
0.05 

216 4 
0.90        0.02 

Overload 3 
0.01 

3 
0.01 

2 229 
0.01         0.97 

Subject 3 - Complexity 
Low Medium High Overload 

Low 241 
0.92 

5 
0.02 

15 
0.06 

1 
0 

Medium 
0 

0 

197 

0.95 
9 

0.04 

2 

0.01 

High 10 21 191 28 
0.04 0.08 0.76 0.11 

Overload 0 
0 

2 
0.01 

25 
0.11 

193 
0.88 

Subject 4 - Complexity 
Low Medium High    Overload 

Low 
189 10 18             6 

0.85 0.04 0.08        0.03 

Medium 
1 
0 

183 
0.77 

14 40 
0.06        0.17 

High 
14 

0.06 
2 

0.01 
189 29 

0.81         0.12 

Overload 
4 

0.02 
30 

0.12 
34 177 

0.14         0.72 

Low Medium High Overload 

Low 227 
0.93 

6 
0.02 

2 
0.01 

9 
0.04 

Medium 6 
0.03 

202 
0.87 

24 
0.10 

1 
0 

High 0 
0 

13 
0.06 

209 
0.92 

6 
0.03 

Overload 
1 
0 

1 
0 

10 
0.05 

203 
0.94 

Low 

Medium 

High 

Overload 

Subject 2 ■ Volume 
Low Medium High    < Overload 

Low 210 24 9 3 
0.85 0.10 0.04 0.01 

Medium 15 
0.07 

165 
0.72 

45 
0.20 

3 
0.01 

High 2 
0.01 

49 
0.20 

193 
0.79 

1 
0 

Overload 1 
0 

4 
0.02 

0 
0 

196 
0.98 

Subject 3 - Volume 
Low Medium High    ( Overload 

203 7 18 0 
0.89 0.03 0.08 0 

Medium 1 
0 

198 
0.87 

29 
0.13 

0 
0 

High 12 19 203 3 
0.05 0.08 0.86 0.01 

Overload 
0 
0 

2 
0.01 

2 
0.01 

243 
0.98 

Subject 4 - Volume 
Low     Medium     High    Overload 

194 
0.81 

16 
0.08 

11 
0.05 

8 
0.03 

22 
0.09 
174 

0.82 
19 

0.08 
4 

0.02 

20 
0.08 

14 
0.07 
190 

0.83 
7 

0.03 

4 
0.02 

8 
0.04 

8 
0.04 
221 
0.92 
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Subject 5 - Complexity Subject 5 - Volume 

Low Medium High    Overload 
187 27 9 10 

Low 
0.80 0.12 0.04 0.04 

Medium 
26 

0.12 
162 

0.72 
22 

0.10 
14 

0.06 

High 
2 

0.01 
40 

0.17 
192 

0.79 
8 

0.03 

Overload 
3 

0.01 
16 

0.07 
7 

0.03 
195 

0.88 

Subject 6 ■ Complexity 
Low Medium High Dverload 

170 35 19 5 
Low 0.74 0.15 0.08 0.02 

Medium 
43 

0.17 
142 

0.57 
60 

0.24 
4 

0.02 

High 
16 

0.07 
28 

0.12 
180 

0.77 
9 

0.04 

Overload 
11 

0.05 
3 

0.01 
9 

0.04? 
206 
0.90 

Subject 7 - Complexity 
Low Medium High    ( Dverload 

Low 
187 21 35 0 

0.77 0.09 0.14 0 

Medium 
29 

0.12;: 
188 

0.80 
19 

0.08 
0 
0 

High 
20 221 189 0 

0.09 0.10 0.82 0 

Overload 
6 

0.03 
1 
0 

oi 
Op 

223 
0.97 

Low Medium 
.,. .      Overloa 
High          d 

Low 
178 

0.79 
11 

0.05 
26 

0.12 
11 

0.05 

Medium 
13s 

0.06 f 
175 

0.75 
19 

0.08 
26 

0.11 

High 
19 

0.08 
11 

0.05 
180 

0.80 
16 

0.07 

Overload 
7 

0.03 
31 

0.13 
9 

0.04 
188 

0.80 

Subject 6 - Volume 
Low Medium High    Overload 

Low 
209 

0.86 
7 

0.03 
26 2 

0.11         0.01 

Medium 
4 

0.02 
185 

0.83 
33 0 

0.15             0 

High 
21 

0.08 
65 

0.26 
166 0 

0.66             0 

Overload 
4 

0.02 
4 

0.02 
4 210 

0.02        0.95 

Subject 7 - Volume 
Low Medium High    Overload 

Low 
188 

0.85 
25 

0.11 
7             1 

0.03             0 

Medium 
32| 

0.13 
198 

0.80 
16             0 

0.07             0 

High 
4 

0.02 
14K 

0.06 
210             1 
0.92             0 

Overload 
0 
0 

0 
0 

0         244 
0              1 

* Each table consists of each row signifying 
truth and each column representing testing. 
For each true level, the top number is the 
number of samples classified at each test 
level and the bottom number is the relative 
frequency of that occurrence. 
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APPENDIX B - INDIVIDUAL SUBJECT PROBABILITY MATRICES USING 
REDUCED FEATURES * 

Subject 1 - Complexity Subject 1 - Volume 

Low Medium High    Overload 

Low 
212 

0.95 
9 

0.04 
2             0 

0.01             0 

Medium 
7 

0.03 
209 
0.94 

1             5 
0        0.02 

High 
0 
0 

6 
0.03 

229             5 
0.95        0.02 

Overload 
0 
0 

1 
0 

8         226 
0.03        0.96 

Low Medium High    Overload 
213 13 0             5 

Low 0.92 0.06 0        0.02 
9 208 11             1 

Medium 0.04 0.91 0.05             0 
2 17 216             3 

High 0.01 0.07 0.91         0.01 
1 0 1          220 

Overload 0 0 0        0.99 

Subject 2 - Complexity 
Low Medium High Overload 

Low 
222 

0.96 
7 

0.03 
3 

0.01 
0 
0 

Medium 
2 

0.01 
224 
0.96 

5 
0.02 

3 
0.01 

High 
0 
0 

0 
0 

:."J229' 
1 

0 
0 

Overload 
0 
0 

0 
0 

0: 
0> 

225 
1 

Subject 2 - Volume 
Low Medium High Overload 

222 11 1 0 
Low 0.95 0.05 0 0 

11 199 8 12 
Medium 0.05 0.87 0.03 0.05 

1 5 218 0 
High 0 0.02 0.97 0 

0 2 0 230 
Overload 0 0.01 0: 0.99 

Subject 3 - Complexity Subject 3 - Volume 
Low Medium High    Overload 

Low 
227 
0.99 

2 
0.01 

1             0 
0             0 

Medium 
4 

0.02 
203 
0.93 

12             0 
0.05             0 

High 
1 
0 

3 
0.01 

219             7 
0.95        0.03 

Overload 
0 
0 

3 
0.01 

3         235 
0.01         0.98 

Low Medium High    Overload 

Low 
228 
0.97 

2 
0.01 

5             0 
0.02             0 

Medium 
4; 

0.021 
216 
0.92 

15             0 
0.06             0 

High 
4 

0.02 
111 

0.05 
223             0 
0.94             0 

Overload 0 
0 

0 
0 

0         212 
0             1 

Subject 4 - Complexity Subject 4 - Volume 

Low Medium High    I Overload 

Low 
210 

0.91 
9 

0.04 
7 

0.03 
6 

0.03 

Medium 
2 

0.01 
230 
0.96 

1 
0 

7 
0.03 

High 
11 

0.05 
5 

0.02 
191 

0.87 
13 

0.06 

Overload 
0 
0 

3 
0.01 

10 
0.04 

215 
0.94 

Low Medium High    ( Overload 

Low 
194 

0.89 
9 

0.04 
11 

0.05 
5 

0.02 

Medium 
3 

0.01 
203 
0.86 

14 
0.06 

17 
0.07 

High 
11 

0.05 
8 

0.03 
202 
0.88 

9 
0.04 

Overload 
0 
0 

2 
0.01 

7 
0.03 

225 
0.96 
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r 
Subject 5 - Compl exity 
Low     Medium High    ( Overload 

Low 202 15 7 3 
0.89 0.07 0.03 0.01 

Medium 11 
0.05 

179 
0.80 

15 
0.07 

18 
0.08 

High 3 
0.01 

31 
0.13 

209 
0.85 

4 
0.02 

Overload 1 
0 

10 
0.04 

3 
0.01 

209 
0.94 

Subject 5 - Volume 

Subject 6 - Complexity 
Low Medium High    Overload 

Low 198 25 4            3 
0.86 0.11 0.02        0.01 

Medium 19 
0.08 

186 
0.77 

34             2 
0.14        0.01 

High 4 
0.02 

3 
0.01 

211             9 
0.93        0.04 

Overload 0 
0 

0 
0 

0         222 
0             1 

Subject 7 - Complexity 
Low Medium High    Overload 

Low 213 
0.93 

9 
0.04 

7             0 
0.03             0 

Medium 6 
0.02 

215 
0.88 

23             1 
0.09             0 

High 5 
0.02 

29 
0.12 

202             0 
0.86             0 

Overload 0 
0 

0 
0 

0         210 
0             1 

Low Medium High    Overload 
189 29 20            8 

Low 0.77 0.12 0.08        0.03 
9 195 6            12 

Medium 0.04 0.88 0.03        0.05 
6 7 208             5 

High 0.03 0.03 0.92        0.02 
2 15 2         207 

Overload 0.01 0.07 0.01         0.92 

Subject 6 - Volume 
Low Medium High    Overload 

Low 209 
0.92 

3 
0.01 

13            1 
0.06            0 

Medium 2 
0.01 

210 
0.94 

12             0 
0.05             0 

High 9 
0.04 

21 
0.09 

202             0 
0.87             0 

Overload 6 
0.03 

0 
0 

1          231 
0        0.97 

Subject 7 - Volume 
Low Medium High Overload 

Low 216 16 2 0 
0.92 0.07 0.01 0 

Medium 9 
0.04 

223 
0.91 

13 
0.05 

0 
0 

High 0 
0 

2 
0.01 

222 
0.99 

0 
0 

Overload 0 
0 

4 
0.02 

0 
0 

213 
0.98 

* Each table consists of each row signifying 
truth and each column representing testing. 
For each true level, the top number is the 
number of samples classified at each test 
level and the bottom number is the relative 
frequency of that occurrence. 
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APPENDIX C - SEVEN-CLASS INDIVIDUAL SUBJECT PROBABILITY MATRICES 

Subject 1 

VL           VM VH CL CM CH OL 

209 5 1 5 8 0 2 
VL 

0.91 0.02 0 0.02 0.03 0 0.01 

VM 
1 
0 

156 
0.72 

6 
0.03 

6 
0.03 

11 
0.05 

37 
0.17 

0 
0 

0 7 154 4 14 8 11 
VH 

0 0.04 0.78 0.02 0.07 0.04 0.06 

9 0 0 211 18 0 0 
CL 

0.04 0 0 0.89 0.08 0 0 
35 0 21 14 182 0 4 

CM 
0.14 0 0.08 0.05 0.71 0 0.02 

2 49 16 0 3 159 10 
CH 

0.01 0.21 0.07 0 0.01 0.67 0.04 

1 0 12 1 2 6 210 
OL 

0 0 0.05 0 0.01 0.03 0.91 

VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low 
CM-Complexity Medium CH-Complexity High OL-Overload 

Subject 2 

VL           VM VH CL CM CH OL 
206 14 1 4 0 13 0 

VL 
0.87 0.06 0 0.02 0 0.05 0 

12 136 57 8 1 3 5 
VM 

0.05 0.61 0.26 0.04 0 0.01 0.02 

0 52 156 7 15 2 2 
VH 

0 0.22 0.67 0.03 0.06 0.01 0.01 

CL 
1 5 7 195 11 6 0 
0 0.02 0.03 0.87 0.05 0.03 0 

CM 
2 6 8 24£;SXS 178 11 3 

0.01 0.03 0.03 0.10 0.77 0.05 0.01 

CH 
2 0 0 2 5 ;222 0 

0.01 0 0 0.01 0.02 0.96 0 

OL 
0 0 0 0 0 0 228 
0 0 0 0 0 0 1 

VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low 
CM-Complexity Medium CH-Complexity High OL-Overload 
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Subject 3 
VL           VM VH CL CM CH OL 

VL 213 5 8 6 0 0 0 
0.92 0.02 0.03 0.03 0 0 0 

VM 5 190 34 1 0 0 0 
0.02 0.83 0.15 0 0 0 0 

VH 2 17 199 2 1 0 6 
0.01 0.07 0.88 0.01 0 0 0.03 

CL 0 
0 

0 
0 

1 
0 

227 
0.97 

3 
0.01 

3 
0.01 

0 
0 

CM 0 
0 

0 
0 

0 
0 

4 
0.02 

215 
0.95 

8 
0.04 

0 
0 

CH 0 
0 

0 
0 

1 
0 

0 
0 

10 
0.04 

220 
0.93 

5 
0.02 

OL 0 
0 

0 
0 

0 
0 

0 
0 

8 
0.04 

2 
0.01 

214 
0.96 

VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low 
CM-Complexity Medium CH-Complexity High OL-Overload 

VL 

VL 

VM 

VH 

CL 

CM 

CH 

OL 

VM 
Subject 4 

VH CL CM CH OL 
183 

0.80 
11 

0.05 
8 

0.03 
32 

0.13 
3 

0.01 
10 

0.04 
1 
0 

14 
0.06 
179 
0.80 

10 
0.04 

9 
0.04 

13 
0.06 

12 
0.05 

3 
0.01 

12 
0.05 

7 
0.03 
149 

0.65 
2 

0.01 
1 
0 

37 
0.16 

2 
0.01 

12 
0.05 

10 
0.04 

0 
0 

182 
0.76 

1 
0 
4 

0.02 
0 
0 

0 
0 
3 

0.01 
0 
0 
5 

0.02 
188 

0.85 
0 
0 

14 
0.06 

8 
0.03 

9 
0.04 

50 
0.22 

9 
0.04 

2 
0.01 
158 

0.67 
14 

0.06 
VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low 
CM-Complexity Medium CH-Complexity High OL-Overload  

0 
0 
4 

0.02 
12 

0.05 
0 
0 

14 
0.06 

15 
0.06 
198 

0.85 
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Subject 5 
VL           VM VH CL CM CH OL 

181 25 11 12 5 2 12 
VL 

0.73 0.10 0.04 0.05 0.02 0.01 0.05 
10 150 5 9 15 4 27 

VM 
0.05 0.68 0.02 0.04 0.07 0.02 0.12 

4 5 191 1 9 9 3 
VH 0.02 0.02 0.86 0 0.04 0.04 0.01 

14 12 1 177 26 1 0 
CL 

0.06 0.05 0 0.77 0.11 0 0 
7 16 19 24';:?! 138 11 7 

CM 
0.03 0.07 0.09 0.11 10.62 0.05 0.03 

CH 
6 3 30 3 32 164 6 

0.02 0.01 0.12 0.01 0.13 0.67 0.02 
13 30 11 0 13 8 148 

OL 
0.06 0.13 0.05 0 0.06 0.04 0.66 

VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low 
CM-Complexity Medium CH-Complexity High OL-Overload 

Subject 6 
VL           VM VH CL CM CH OL 

VL 
179 10 16 5 0 0 0 

0.85 0.05 0.08 0.02 0 0 0 

VM 
24 157 48 0 0 0 0 

0.10 0.69 0.21 0 0 0 0 

VH 
7 40 179 0 0 0 0 

0.03 0.18 0.79 0 0 0 0 

CL 
0 1 OHM tMW 25 15 3 
0 0 0 0.81 0.11 0.06 0.01 

CM 
2 0 0 43 138 44 0 

0.01 0 0 0.19 0.61 0.19 0 

CH 
0 0 1 5 2$M:i 201 13 
0 0 0 0.02 0.12 0.81 0.05 

OL 
0 0 0 4 1 7J'X-: 223 
0 0 0 0.02 0 0.03 0.95 

VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low 
CM-Complexity Medium CH-Complexity High OL-Overload 
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Subject 7 
VL VM VH CL CM CH OL 

15 VI 158 8 6 19 18 0 
0.71 0.04 0.03 0.08 0.08 0.07 0 

VM 12 183 19 2 12 3 0 
0.05 0.79 0.08 0.01 0.05 0.01 0 

VH 0 5 192 4 10 4 11 
0 0.02 0.85 0.02 0.04 0.02 0.05 

Cl 34 2 3 144 19 20 0 
0.15 0.01 0.01 0.65 0.09 0.09 0 

CM 21 18 29 12 146 16 2 
0.09 0.07 0.12 0.05 0.60 0.07 0.01 

CH 23 6 0 12 11 180 0 
0.10 0.03 0 0.05 0.05 0.78 0 

ni 0 0 0 0 0 0 231 
0 0 0 0 0 0 1 

VL-Volume Low VM-Volume Medium VH- Volume High CL-Complexity Low 
<JM- Complexity Medium CH-Complexity High OL-Overload 

* Each table consists of each row signifying truth and each column representing testing. For each 
true level, the top number is the number of samples classified at each test level and the bottom 
number is the relative frequency of that occurrence. 
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